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The wave-function matching �WFM� technique has recently been developed for the calculation of electronic
transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green’s
function approach. The WFM formalism presented so far requires the evaluation of all the propagating and
evanescent bulk modes of the left and right electrodes in order to obtain the correct coupling between device
and electrode regions. In this paper we will describe a modified WFM approach that allows for the exclusion
of the vast majority of the evanescent modes in all parts of the calculation. This approach makes it feasible to
apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant
reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a
carbon nanotube field-effect-transistor device displaying band-to-band tunneling and modeled within the semi-
empirical extended Hückel theory framework.
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I. INTRODUCTION

Quantum transport simulations have become an important
theoretical tool for investigating the electrical properties of
nanoscale systems.1–5 The basis for the approach is the
Landauer-Büttiker picture of coherent transport, where the
electrical properties of a nanoscale constriction are described
by the transmission coefficients of a number of one-electron
modes propagating coherently through the constriction. The
approach has been used successfully to describe the electrical
properties of a wide range of nanoscale systems, including
atomic wires, molecules, and interfaces.6–15 In order to apply
the method to semiconductor device simulation, it is neces-
sary to handle systems comprising many thousand atoms,
and this will require new efficient algorithms for calculating
the transmission coefficient.

Our main purpose in this paper is to give details of a
method we have developed based on the wave-function
matching �WFM� technique,16–18 which is suitable for study-
ing electronic transport in large-scale atomic two-probe sys-
tems, such as large carbon nanotubes or nanowire configura-
tions.

We adopt the many-channel formulation of Landauer and
Büttiker to describe electron transport in nanoscale two-
probe systems composed of a left and a right electrode at-
tached to a central device �see Fig. 1�. In this formulation,
the conduction G of incident electrons through the device is
intuitively given in terms of transmission and reflection ma-
trices, t and r, that satisfy the unitarity condition t†t+r†r
=1 in the case of elastic scattering. The matrix element tij is
the probability amplitude of an incident electron in a mode i
in the left electrode being scattered into a mode j in the right
electrode, and correspondingly rik is the probability of it be-
ing reflected back into mode k in the left electrode. This
simple interpretation yields the Landauer-Büttiker formula3

G =
2e2

h
Tr�t†t� , �1�

which holds in the limit of infinitesimal voltage bias and zero
temperature.

To our knowledge, the WFM schemes presented so far in
the literature require the evaluation of all the Bloch and eva-
nescent bulk modes of the left and right electrodes in order to
obtain the correct coupling between device and electrode re-
gions. The reason for this is that the complete set of bulk
modes is needed to be able to represent the proper reflected
and transmitted wave functions. In this paper we will de-
scribe a modified WFM approach that allows for the exclu-
sion of the vast majority of the evanescent modes in all parts
of the calculation. The primary modification can be pictured
as a simple extension of the central region with a few prin-
cipal electrode layers. In this manner, it becomes advanta-
geous to apply iterative techniques for obtaining the rela-
tively few Bloch modes and slowly decaying evanescent
modes that are required. We have recently developed such an
iterative method in Ref. 19, which allows for an order of
magnitude reduction of the computational expense of the
WFM method in practice.

In this work, the proper analysis of the modified WFM
approach is presented. The accuracy of the method is inves-

Device Bulk electrodeBulk electrode

FIG. 1. �Color online� Schematic illustration of a nanoscale two-
probe system in which a device is sandwiched between two semi-
infinite bulk electrodes.
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tigated and appropriate error estimates are developed. As an
illustration of the applicability of our WFM scheme we con-
sider a 1440 atom carbon nanotube field-effect transistor
�CNTFET� device of 14 nm in length. We calculate the zero-
bias transmission curves of the device under various gate
voltages and reproduce previously established characteristics
of band-to-band tunneling.20 We compare directly the results
of the modified WFM method to those of the standard WFM
method for quantitative verification of the calculations.

The rest of the paper is organized as follows. The WFM
formalism that is used to obtain t and r is introduced in Sec.
II. In Sec. III we present our method to effectively exclude
the rapidly decaying evanescent modes from the two-probe
transport calculations. Numerical results are presented in
Sec. IV and the paper ends with a short summary and out-
look.

II. FORMALISM

In this section we give a minimal review of the formalism
and notation that is used in the current work in order to
determine the transmission and reflection matrices t and r.
This WFM technique has several attractive features com-
pared to the widely used and mathematically equivalent
Green’s function approach.1,2 Most importantly, the transpar-
ent Landauer picture of electrons scattering via the central
region between Bloch modes of the electrodes is retained
throughout the calculation. Moreover, WFM allows one to
consider the significance of each available mode individually
in order to achieve more efficient numerical procedures to
obtain t and r.

A. Wave-function matching

The WFM method is based on direct matching of the bulk
modes in the left and right electrodes to the scattering wave
function of the central region. For the most part this involves
two major tasks: obtaining the bulk electrode modes and
solving a system of linear equations. The bulk electrode
modes can be characterized as either propagating or evanes-
cent �exponentially decaying� modes but only the propagat-
ing modes contribute to G in Eq. �1�. We may write G
= �2e2 /h�T, where

T = �
kk�

�tkk��
2 �2�

is the total transmission and the sum is limited to propagat-
ing modes k and k� in the left and right electrodes, respec-
tively. Notice, however, that the evanescent modes are still
needed in order to obtain the correct matrix elements tkk�. We
will discuss this matter in Sec. III C.

We assume a tight-binding setup for the two-probe sys-
tems in which the infinite structure is divided into principal
layers numbered i=−� , . . . ,� and composed of a finite cen-
tral �C� region containing the device and two semi-infinite
left �L� and right �R� electrode regions �see Fig. 2�. The wave
function is �i�x�=� j

mici,j�i,j�x−Xi,j� in layer i, where �i,j de-
notes localized nonorthogonal atomic orbitals and Xi,j are the
positions of the mi orbitals in layer i. We represent �i�x� by

a column vector of the expansion coefficients, given by �i
= �ci,1 , . . . ,ci,mi

�T, and write the wave function � extending
over the entire system as �= ��−�

T , . . . ,��
T�T. We also assume

that the border layers 1 and n of the central region are always
identical to a layer of the connecting electrodes.

We refer the reader to Refs. 16–18 and 21 for details on
how to employ WFM to our setup. Here and in the rest of
this paper, we will use the following notation for the key
elements. The matrices �L

�= ��L,1
� , . . . ,�L,mL

� � contain in
their columns the full set of mL left-going �−� and mL right-
going �+� bulk modes �L,k

� of the left electrode, and the
diagonal matrices �L

�=diag��L,1
� ,�L,2

� , . . . ,�L,mL

� � hold the
corresponding Bloch factors.22 If trivial modes with ��L,k

+ �
=0 or ��L,k

− �=� occur they are simply rejected. We assume
that all the evanescent bulk modes are �state-� normalized
�L,k

�†�L,k
� =1, while all the Bloch bulk modes are flux

normalized23 �L,k
�†�L,k

� =dL /vL,k
� , where vL,k

� are the group
velocities15,24 and dL is the layer thickness. Similarly for the
right electrode the matrices �R

� and �R
� are formed.

We also introduce the Bloch matrices17 BL
�

=�L
��L

���L
��−1 and BR

�=�R
��R

���R
��−1, which propagate

the layer wave functions in the bulk electrode

� j
� = �B�� j−i�i

�, �3�

where subscript L is implied for the left electrode �i , j�1�
and R for the right electrode �i , j�n�. Notice that the first
central region layer is defined for layer 1 and not layer 0, as
is the case in Ref. 18.

As explicitly shown in Refs. 16–18, by fixing the layer
wave functions coming into the C region �e.g., in our case
�1

+=�L,k
+ �L,k

+ and �n
−=0� and matching the layer wave func-

tions across the C region boundaries, the system of linear
equations for the central region wave function �C can be
written as

�ESC − HC − �L − �R��C = b , �4�

where E is the energy, SC the overlap, and HC the Hamil-
tonian matrix of the central region. In the following we dis-
cuss the terms, �L, �R, and b, which arise from matching the
boundary conditions with the electrode modes.

L C R

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

ψ0 ψ1 ψ2 ψn ψn+1ψn−1

In-

coming

Re-

flected

Trans-

mitted

Zero

· · ·

FIG. 2. Schematic representation of WFM applied to layered
two-probe systems, where the central device region, consisting of
layers i=1, . . . ,n, is attached to left and right semi-infinite elec-
trodes. The incoming propagating mode from the left electrode is
scattered in the central region and ends up as reflected and trans-
mitted superpositions of propagating and evanescent modes.
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The self-energy matrices, �L and �R, arise from matching
with the outgoing left and right electrode modes. They only
have nonzero terms in the upper left and lower right corner
blocks, respectively, and these elements can be calculated in
terms of the Bloch matrices16,17

��L�1,1 = H0,1
† �H1 + H0,1

† �BL
−�−1�−1H0,1 �5�

and

��R�n,n = Hn,n+1�Hn + Hn,n+1BR
+�−1Hn,n+1

† , �6�

where we have introduced the overline notation Hi�ESi
−Hi and Hi,j �ESi,j −Hi,j. For the current setup, these matri-
ces are identical to the self-energy matrices introduced in the
Green’s function formalism1 �to within an infinitesimal
imaginary shift of E� and may be evaluated by well-known
recursive techniques25,26 or constructed directly from the
electrode modes using Eq. �6�.

The source term b arises from the incoming mode. As-
suming an incoming mode from the left, we have b
= �b1

T ,0T , . . . ,0T�T specified by the expression

b1 = − �H0,1
† + ��L�1,1BL

+��0, �7�

where �0 is the incoming wave function.
For notational simplicity in the following sections, we

leave out the implied subscripts L or R, indicating the left or
right electrode, whenever the formalism is the same for both
�e.g., for symbols m ,�k ,�k ,�� ,�� ,B� ,�, etc.�.

B. Transmission and reflection coefficients

As a final step we want to determine the t and r matrices
from the boundary wave functions �1 and �n that have been
obtained by solving Eq. �4�. When the incoming wave �0 is
specified to be the kth right-going mode �L,k

+ of the left elec-
trode, then �n will be the superposition of outgoing right-
transmitted waves. The kth column of the transmission ma-
trix tk is defined as the corresponding expansion coefficients

in right electrode modes and can be evaluated by solving

�R
+tk = �n, �8�

where �R
+ is the mR�mR column matrix holding the right-

going bulk modes of the right electrode �and here assumed to
be nonsingular�. Similarly the kth column of the reflection
matrix rk is given by

�L
−rk = �1 − �L,k

+ �L,k
+ , �9�

where �L
− holds the left-going bulk modes of the left elec-

trode. The flux normalization ensures that t†t+r†r=1.

III. EXCLUDING EVANESCENT MODES

The most time-consuming task of the WFM method is
often to determine the electrode modes, which requires solv-
ing a quadratic eigenvalue problem.16 As examples, see the
profiling results listed in Table I, where we have used the
method to compute t and r for a selection of two-probe
systems.27 The CPU timings show that to determine the elec-
trode modes by employing the state-of-the-art LAPACK eigen-
solver DGEEV is, in general, much more expensive than to
solve the system of linear equations in Eq. �4�. We expect
this trend to hold for larger systems as well. Therefore, in the
attempt to model significantly larger devices �thousands of
atoms�, it is of essential interest to reduce the numerical cost
of the electrode modes calculation. We argue that a compu-
tationally reasonable approach is to limit the number of elec-
trode modes taken into account, e.g., by excluding the least
important evanescent modes. In this section, a proper tech-
nique to do this in a rigorous and systematic fashion is pre-
sented.

A. Decay of evanescent modes

The procedure to determine the Bloch factors �k and non-
trivial modes �k of an ideal electrode and subsequently char-

TABLE I. CPU times in seconds when using WFM for calculating t and r at 20 different energies inside
E� �−2 eV;2 eV� for various two-probe systems. The numbers of atoms in the central region �electrode unit
cell� are indicated. The four rightmost columns show the CPU times spent for computing the electrode bulk
modes with DGEEV and in this work vs solving the central region linear systems in Eq. �4� and the system
with two extra principal layers on each side.

System Atoms Equation �4�
Equation �4�

�l=2� DGEEV This work

Fe-MgO-Fe 27�6� 0.8 0.9 1.3 1.1

Al-C�7-Al 74�18� 0.4 0.6 3.6 1.6

Au-DTB-Au 102�27� 8.1 13.5 91.0 28.2

Au-CNT�8,0��1-Au 140�27� 11.4 16.6 77.6 17.1

Au-CNT�8,0��5-Au 268�27� 45.3 50.3 83.6 17.8

CNT�8,0�-CNT�8,0� 192�64� 7.0 11.9 129.0 19.4

CNT�4,4�-CNT�8,0� 256�64 �64� 7.2 12.4 121.5 21.0

CNT�5,0�-CNT�10,0� 300�40 �80� 24.7 31.5 113.3 22.6

CNT�18,0�-CNT�18,0� 576�144� 172.2 225.5 1362.2 253.3

CNTFET �see Fig. 6� 1440�160� 259.8 286.9 4633.0 372.3
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acterize these as right-going �+� or left-going �−� is well
described in the literature.16–18,28 We note that only the ob-
tained propagating modes with ��k�=1 are able to carry
charge deeply into the electrodes and thus enter the Landauer
expression in Eq. �2�. The evanescent modes with ��k��1, on
the other hand, decay exponentially but can still contribute to
the current in a two-probe system, as the “tails” may reach
across the central region boundaries.

Consider a typical example of an electrode modes evalu-
ation. We look at a gold electrode with 27 atoms in the unit
cell represented by 9 �sp3d5� orbitals for each Au atom. Such
a system results in 243 right-going and 243 left-going
modes. Figure 3�a� shows the positions in the complex plane
of the Bloch factors corresponding to the right-going modes
�i.e., ��k��1� for energy E=−1.5 eV. We see that there are
exactly three propagating modes which have Bloch factors
located on the unit circle. The remaining modes are evanes-
cent, of which many have Bloch factors with small magni-
tude very close to the origin.

Figure 3�b� illustrates how the 243 left-going modes
would propagate through ten successive gold electrode unit
cells. The figure shows that the amplitudes of the three
propagating modes are unchanged, while the evanescent
modes are decaying exponentially. In particular, we note that

the evanescent modes with Bloch factors of small magnitude
are very rapidly decaying and vanishing in comparison to the
propagating modes after only a few layers. In the following,
we will exploit this observation and attempt to exclude such
evanescent modes from the WFM calculation altogether. For-
mally this can be accomplished if only the electrode modes
�k with Bloch factors �k satisfying

�min � ��k� � �min
−1 �10�

are computed and subsequently taken into account, for a rea-
sonable choice of 0	�min	1. Equation �10� is adopted as
the key relation to select a particular subset of the available
electrode modes �as recently suggested in Ref. 17�.

B. Extra electrode layers

We will denote the mode, Bloch, and self-energy matrices
from which the rapidly decaying evanescent modes are ex-

cluded with a tilde, i.e., as �̃�, B̃�, and �̃. The mode ma-
trices holding the excluded modes are denoted by a math-

ring accent �̊�, so that

�� = ��̃�,�̊�� �11�

is the assumed splitting of the full set. All expressions to
evaluate the Bloch and self-energy matrices are unchanged

as given in Sec. II �now ��̃��−1 merely represents the

pseudoinverses of �̃��. However, since the column spaces of

�̃� are not complete, there is no longer any guarantee that
WFM can be performed so that the resulting self-energy ma-
trices and, in turn, the solution �C= ��1

T , . . . ,�n
T�T of the lin-

ear system in Eq. �4�, are correct. In addition, it is clear that
errors can occur in the calculation of t and r from Eqs. �8�
and �9� because the boundary wave functions �1 and �n

might not be fully represented in the reduced sets �̃R
+ and

�̃L
−.
In order to diminish the errors introduced by excluding

evanescent modes, we propose to insert additional electrode
layers in the central region �see Fig. 4�. As illustrated in Sec.
III A, this would quickly reduce the imprint of the rapidly
decaying evanescent modes in the boundary layer wave

functions �̃1 and �̃n, which means that the critical compo-

nents outside the column spaces �̃� become negligible at an
exponential rate in terms of the number of additional layers.
We emphasize that the inserted layers may be “fictitious” in
the sense that they can be accommodated by simple block-

0.2

0.4

0.6

0.8

1

Re{λ}

Im{λ}

0

π
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π

3
2
π

(a)

1.0

0.5

0.0

-0.5

-1.0
0 1 2 3 4 5 6 7 8 9 10

R
e{

λ
l }

l (layers)

(b)

FIG. 3. �Color online� �a� Positions of the Bloch factors
�k���k��1� obtained for a bulk Au�111� electrode with 27 atoms per
unit cell at E=−1.5 eV. �b� Amplitudes of the corresponding nor-
malized electrode modes �k moving through ten layers of the ideal
bulk electrode. A total of 243 modes are shown of which three are
propagating �colored/dashed� and the rest are evanescent
�circles/black�.

L C R

z }| { z }| { z }| {

ψ0 ψ
(l)
1 ψ

(0)
1 ψ2 ψ

(l)
nψ

(0)
n ψn+1ψn−1· · · · · ·· · ·

| {z } | {z }

l extra layers l extra layers

FIG. 4. Two-probe system in which the C region boundaries are
expanded by l extra electrode layers.
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Gaussian eliminations prior to the solving of Eq. �4� for the
original system.

The above statements are confirmed by the following
analysis. We expand the electrode wave functions in the cor-
responding complete set of bulk modes

�i
� = ��ai

� = ��̃�,�̊���ãi
�

åi
�	 , �12�

where ai
�= �ãi

�T , åi
�T�T are vectors that contain the expansion

coefficients. In the particular case, where l extra electrode
layers are inserted and the border layers of the C region are
identical to the connecting electrode layers, the electrode
wave functions entering the matching boundary equations
will be

�1
�l�− = �BL

−�−l�1
− = ��̃L

−,�̊L
−����̃L

−�−lã1
−

��̊L
−�−lå1

−	 �13�

and

�n
�l�+ = �BR

��l�n
+ = ��̃R

+,�̊R
+����̃R

+�lãn
+

��̊R
+�lån

+	 �14�

using the definition B�=��������−1. This shows that the

critical components outside the column spaces of �̃L
� and

�̃R
� are given by coefficients ��̊L

−�−lå1
− and ��̊R

+�lån
+, respec-

tively. If this set only consists of the most rapidly decaying
of the evanescent modes according to Eq. �10�, that is, ��k�

�min

−1 for the diagonal elements of �̊L
− and ��k�	�min for the

diagonal elements of �̊R
+, where �min is less than 1, these

coefficients always decrease as a function of l.
We conclude that WFM with the reduced set of modes

approaches the exact case if additional electrode layers are

inserted and the solution �̃C obtained from Eq. �4� ap-
proaches the correct solution �C accordingly.

C. Accuracy

As pointed out above, the exclusion of some of the eva-
nescent modes from the mode matrices �� will introduce

errors because the column spaces in �̃� are incomplete. In
this section we will estimate how this will influence the ac-
curacy of the calculated transmission and reflection coeffi-
cients in terms of the parameter �min and the number l of
extra electrode layers.

Consider first the accuracy of the transmission matrix t in
the case of the extended two-probe system in Fig. 4. For a
specific incoming mode k, we compare the correct result ob-
tained with the complete set of modes �cf. Eq. �8��,

tk = � t̃k

t̊k
	 = ��̃R

+,�̊R
+�−1�n

�l�+, �15�

to the result obtained with the reduced mode matrix �denoted
by a prime�,

tk� = � t̃k�

0̊�
	 = ��̃R

+, 0̊�−1�n
�l�+, �16�

where 0̊� represents the zero vector of size m̊R and 0̊ the zero
matrix of size mR� m̊R.

The important coefficients in tk and tk� for transmission
calculations are the ones representing the Bloch modes
which enter the Landauer-Büttiker formula in Eq. �2�. Since
these are never excluded they will always be located within
the first m̃R elements, i.e., in t̃k and t̃k�. It then suffices to
compare these parts of the transmission matrix which we can
do as follows.

From the properties of the pseudoinverse we are able to
write the relation

��̃R
+�−1��̃R

+,�̊R
+� = �Ĩ,��̃R

+�−1�̊R
+� , �17�

where Ĩ is the identity matrix of order equal to the number of
included modes m̃R. Using the expression in Eq. �14� it then
follows that

t̃k = ��̃R
+�lãn

+ �18�

and

t̃k� = t̃k + ��̃R
+�−1�̊R

+��̊R
+�lån

+, �19�

where the t̃k� expression clearly corresponds to the correct
coefficients t̃k plus an error term.

We have already established in Sec. III B that the ��̊R
+�lån

+

factor in the error term will decrease as a function of l. We

now show that the other term, ��̃R
+�−1�̊R

+ is independent of l,
and consequently, that the error term in Eq. �19� must de-
crease as a function of l. To this end we look at the two-norm

of ��̃R
+�−1�̊R

+, which satisfies


��̃R
+�−1�̊R

+
2 � m̊R
1/2
��̃R

+�−1
2, �20�

since 
�̊R
+
2� m̊R

1/2 when all evanescent modes are assumed

to be normalized. The norm 
��̃R
+�−1
2 can be readily evalu-

ated and depends on the set of modes included via the pa-
rameter �min but not on l. Thus, we conclude that the only

term of Eq. �19� which depend on l is ��̊R
+�lån

+, and the error
is therefore decreasing as function of l.

Writing Eq. �19� as t̃k�= t̃k+ �̃k, where �̃k holds the errors
on the coefficients of the kth column, we further obtain that
the total transmission T� can be expressed as

T� = T + �
kk�

�t̃kk�
� �̃kk� + �̃kk�

� t̃kk� + ��̃kk��
2� , �21�

where T is the exact result and the summation is over the
Bloch modes k and k� in the left and right electrodes, respec-
tively.

For a first-order estimate of the error term in Eq. �21� we
consider the worst case approximation, where all diagonal

elements of �̊R
+ are equal to the maximum range �min of Eq.

�10�. This makes all elements �̃kk� proportional to �min
l and

we arrive at the simple relation
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�T� − T� � �min
l + O���min

l �2� , �22�

which shows that the error decreases exponentially in terms
of the number of extra layers l.

For a higher-order estimate of the error, we directly moni-
tor the error arising on the boundary conditions in terms of

the coefficient vectors b̃L,k���̃R
+�−1��1

�l�+−�L,k
+ �L,k

+ � and

b̃R,k���̃R
−�−1�n

�l�−, where �1
�l�+ and �n

�l�− are given by solving
Eq. �4�. When the boundary conditions are exactly satisfied,

we have �b̃L,k�=0 and �b̃R,k�=0. In the case where the bound-

ary conditions are not exactly satisfied, b̃R,k represents the
error on the left-going components within the right boundary
layer in the same way that �̃k represents the error on the
right-going �transmitted� components. We would therefore

expect the same orders of magnitude of �b̃R,k� and ��̃k� in an
actual calculation for a given mode k. This suggests the fol-
lowing error estimate from Eq. �21�:

�T� − T� � �
k

�2�t̃k���̃k� + ��̃k�2� � �
k

�2�t̃k��b̃R,k� + �b̃R,k�2� ,

�23�

where all the vector norms �e.g., �t̃k�2=�k��t̃kk��
2� are assumed

to be taken over the elements corresponding to Bloch bulk
modes k� only.

Finally, we note without explicit derivation that similar
arguments for the reflection matrix with columns r̃k�

= ��̃L
−�−1��1

�l�−−�L,k
+ �L,k

+ � and the total reflection coefficient
R� result in the same accuracy expressions for �R�−R� if we

substitute t̃k→ r̃k and b̃R,k→ b̃L,k in Eqs. �22� and �23�.

D. Example

To end this section, we exemplify the previous discussion
quantitatively by looking at the Au�111� electrode described
earlier and assuming a 128-atom �4 unit cells� device of zig-
zag �8,0� carbon nanotube �CNT� sandwiched between the
gold electrodes �see the configuration in Fig. 1�. For energy
E=−1.5 eV, we have calculated the deviation between the
total transmission obtained when all bulk modes are taken
into account �T� and when some evanescent modes are ex-
cluded �T�� as specified with different settings of �min. De-
viations are also determined for the corresponding total re-
flection coefficients �R and R��. Figure 5 shows the results as
a function of l, together with the estimate �min

l of Eq. �22�
and the estimate of Eq. �23� both for the transmission and
reflection coefficients, where the higher order terms have
been neglected.

We observe that the absolute error in the obtained trans-
mission coefficients �red curves� and reflection coefficients
�blue curves� is generally decreasing as a function of l, fol-
lowing the same convergence rate as �min

l �dashed line�.
Looking closer at results for neighbor l values, we see that
the errors initially exhibit wavelike oscillations. This is di-
rectly related to the wave form of the evanescent modes that
have been excluded �see the propagation of the slowest de-
caying black curves in Fig. 3�b��. In other words, although
the norm of the errors ��̃k� are decreasing as a function of l,
the specific error �̃kk� on a given �large� coefficient of t̃kk�

� or
r̃kk�
� may increase, which means that the overall error term in

Eq. �21� can go up. Fortunately this is only a local phenom-
enon with the global trend being rapidly decreasing errors.

Consider also the quality of the simple accuracy estimate
of �min

l and the estimates expressed by Eq. �23� for the trans-
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FIG. 5. �Color online� Error �absolute� in the
calculated total transmission �circles/solid red
lines� and reflection �squares/solid blue lines� co-
efficients T� and R� as a function of l. The panels
show the cases of �min set to 0.5, 0.3, and 0.1,
which corresponds to 3, 14, and 31 Au bulk
modes �out of 243, see Fig. 3� taken into account,
respectively. Dashed line indicates the first-order
error estimate �min

l . The upward-pointing and
downward-pointing triangles �green and yellow
lines� show error estimates obtained from Eq.
�23�.
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mission coefficients �green curves� and reflection coefficients
�yellow curves�, respectively. For relatively large �min all es-
timates are very good. However, for smaller values of �min,
only the latter two retain a high quality while the �min

l esti-
mate tends to be overly pessimistic. It is important to remem-
ber that these estimates are by no means strict conditions but
in practice give very reasonable estimates of the accuracy.

We note in passing that the results in the top panel of Fig.
5 correspond to using only the propagating Bloch modes in
the transmission calculation. Still we are able to compute T
and R to an absolute accuracy of three digits by inserting 2
�5 extra electrode layers in the two-probe system. This is
quite remarkable and shows promise for large-scale systems,
e.g., with nanowire electrodes, for which the total number of
evanescent modes available becomes exceedingly great.

IV. APPLICATION

In this section we will apply the developed method to a
nanodevice consisting of a CNT stretched between to two
metal electrodes and controlled by three gates. The setup is
inspired by Appenzeller et al.20 and we expect this particular
arrangement to be able to display so-called band-to-band
�BTB� tunneling, where one observes gate-induced tunneling
from the valence band into the conduction band of a semi-
conducting CNT and vice versa.

We show the configuration of the two-probe system in
Fig. 6. The device configuration contains ten principal layers
of a CNT�8,4�, having 112 atoms in each layer. The diameter
of the tube and the thickness of the principal layer are 8.3 Å
and 11.3 Å, respectively. The electrodes consist of CNT�8,4�
resting on a thin surface of Li, where the lattice constant of
the Li layers is stretched to fit the layer thickness of the CNT.
The central region of the two-probe system comprises a total
of 1440 atoms. An arrangement of rectangular gates is posi-
tioned below the carbon nanotube as indicated on the figure.
In the plane of the illustration �length�height� the dimen-
sions are as follows: dielectric 106�5 Å2; gate A 20
�5 Å2; gate B 50�5 Å2. We set �=4 for the dielectric
constant of the dielectric in order to simulate SiO2 or Al2O3
oxides. All the regions are centered with respect to the elec-
trodes so that the complete setup has mirror symmetry in the
length direction. In the direction perpendicular to the illus-
tration the configuration is assumed repeated every 19.5 Å
as a supercell.

We have obtained the density matrix of the BTB device
by combining the nonequilibrium Green’s function formal-
ism with a semiempirical extended Hückel model �EHT� us-
ing the parameterization of Hoffmann.29 From the density
matrix we calculate Mulliken populations on each atom and

represent the total density of the system as a superposition of
Gaussian distributions on each atom properly weighted by
the Mulliken population. The width of the Gaussian is cho-
sen to be consistent with CNDO parameters.30 The electro-
static interaction between the charge distribution and the di-
electrics and gates is subsequently calculated. The Hartree-
type term is then included in the Hamiltonian and the
combined set of equations are solved self-consistently. The
resulting self-consistent EHT model is closely related to the
work of Ref. 30, and a detailed description of the model will
be presented elsewhere.31

In order to adjust the charge transfer between the CNT
and the Li electrodes we add the term ��S to the Li param-
eters. With an appropriate adjusted value of ��, the carbon
nanotube becomes n-type doped. We adjust the value such
that the average charge transfer from Li to the nanotube at
self-consistency is 0.002e per carbon atom in the electrode.
The Fermi energy is then located at −4.29 eV, which is 0.07
eV below the conduction band of the CNT�8,4�.

In the following we fix Vgate A=−2.0 eV and vary the
gate B potentials in the range �−2–4 eV�. Note that we re-
port the gate potentials as an external potential on the elec-
trons, and to translate the values into a gate potential of unit
volts the values must be divided with −e.

In the left part of Fig. 7 we present the total self-
consistent potential induced by the three gates on the carbon
atoms in the CNT over the full extension of the device. For
each configuration of the gate potentials the electrostatic po-
tential is shown twice, i.e., by two curves with the same
color displaced relative to each other with the energies of the
valence-band and conduction-band edges, respectively. In
this way the curves not only represent the electrostatic po-
tential of the device but also the position of the valence- and
conduction-band edges.

Along with this, in the right part of Fig. 7, we show the
corresponding transmission spectrum T�E� for four gate po-
tentials Vgate B=−2.0, 1.0, 2.0, and 4.0 eV. When Vgate B
=−2.0 eV the nanotube is largely unperturbed by the gate
and the transmission coefficient is close to an ideal �8,4�
CNT. We note that this is in agreement with ab initio calcu-
lations by Nardelli et al.,32 which found that a two terminal
�5,5� CNT device in a similar contact geometry showed a
nearly ideal conductance spectrum. In addition, the calcu-
lated band gap of the �8,4� nanotube is 0.81 eV, which is in
good agreement with the value of 0.96 eV obtained from ab
initio density-functional calculations in the generalized gra-
dient approximation.33

From Fig. 7 we see how the bands are shifted upwards by
an increasing amount as the gate B potential is turned up. To
begin with, e.g., for Vgate B=1 eV, this results in lower con-
duction since the conduction band bends away from the

FIG. 6. �Color online� Schematic illustration of a carbon nanotube �8,4� band-to-band tunneling device. The carbon nanotube is posi-
tioned on Li surfaces next to an arrangement of three gates.
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Fermi-level and the Fermi-energy electrons need to tunnel
through the central region. When the gate voltage is at
Vgate B=2 eV, the valence band almost reaches the conduc-
tion band in which case BTB tunneling becomes possible.
By increasing the gate voltage further, more bands become
available for BTB tunneling and the effect is visible as a
steady increase in the calculated transmission T�E� just
above the Fermi level.

The results for the Fermi-level transmission T�EF� corre-
sponding to the T=0 K unit conduction G0 are displayed
with the black curve in Fig. 8. It shows an initial conduc-
tance for Vgate B=−2.0 V of the order of one, a subsequent
drop by 4 orders of magnitude around Vgate B=2.0 V, and a
final increase of 1 order of magnitude toward Vgate B
=4.0 V. We also display the results for the room-
temperature T=300 K conductance �red curve�, which can
be obtained from

G =� dET�E�
e�E−EF�/kBT

�1 + e�E−EF�/kBT�2 . �24�

The two conduction curves are similar, showing that the de-
vice is operating in the tunneling regime rather than the ther-
mal emission regime.

We next briefly comment on the comparison of the simu-
lation to the experiment of Appenzeller et al.20 In both cases
the conduction curves have two branches, which we denote
field emission �FE� and BTB. Initially, the conduction de-
creases with applied gate potential due to the formation of a
barrier in the central region: this is the FE regime. For larger
biases the conduction increases again due to BTB tunneling,
this is the BTB regime. The experimental device displays
thermal emission conduction and shows a corresponding
subthreshold slope, S, of kBT ln�10� /e60 mV /dec in the
FE regime. The theoretical device, on the other hand, dis-
plays tunneling conduction and has S500 mV /dec in the
FE regime. In the BTB regime, the theoretical device has S
2000 mV /dec, while the experimental device shows S
40 mV /dec.

The very different behavior is due to the short channel
length of the theoretical device. The central barrier has a
length of 5 nm and at this length the electron can still
tunnel through the barrier. We see that the short channel
length not only affects the subthreshold slope of the FE re-
gime, but also strongly influences the BTB regime. Works
are in progress for a parallel implementation of the method-
ology, which will make it feasible to simulate larger systems
and thereby investigate the transition from the tunneling to
the thermal emission regime.

All the above results have been calculated with the modi-
fied WFM method using parameters �min=0.1 and l=1.
Thus, the results present a nontrivial application of the
method. To verify the transmission results in Fig. 7 we
present a comparison to the standard WFM method in Fig. 9.
The figure shows that the transmissions curves are identical
to about three significant digits. The CPU time required for
calculating a complete transmission spectrum for Fig. 7 is
��3 h�, while the corresponding calculation presented in
Fig. 9 with the standard WFM method took ��35 h�. Thus,
the overall time saving achieved with the method was there-
fore more than an order of magnitude. The results in Table I
indicate that similar time savings can be expected for other
systems with nontrivial electrodes.
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length of the device for gate potentials Vgate B=−2.0, 1.0, 2.0, and 4.0 eV. �Right panel� The corresponding transmission spectrum. Dotted
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V. SUMMARY

We have developed an efficient approach for calculating
quantum transport in nanoscale systems based on the WFM
scheme originally proposed by Ando.16 In the standard
implementation of the WFM method for two-probe systems,
all bulk modes of the electrodes are required in order to
represent the transmitted and reflected waves in a complete

basis. By extending the central region of the two-probe sys-
tem with extra electrode principal layers, we are able to ex-
clude the vast majority of the evanescent bulk modes from
the calculation altogether. Our final algorithm is therefore
highly efficient, and most importantly, errors and accuracy
can be closely monitored.

We have applied the developed WFM algorithm to a
CNTFET in order to study the mechanisms of band-to-band
tunneling. The setup was inspired by Ref. 20, and the calcu-
lations display features that are also observed in the experi-
ment. However, due to the short channel length the theoret-
ical device operates in the tunneling regime, while the
experimental device operates in the thermal emission regime.

By measuring the CPU times for calculating transmission
spectra of the CNTFET two-probe system and comparing to
the cost of the standard WFM method we have observed a
speed up of more than a factor of 10. We see similar speed
up for other nontrivial systems. We therefore believe that this
is an ideal method to be used with ab initio transport
schemes for large-scale simulations.
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